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A method of chaos control based on stability criterion is proposed in the present paper. This method can
stabilize chaotic systems onto a desired periodic orbit by a small time-continuous perturbation nonlinear
feedback. This method does not require linearization of the system around the stabilized orbit and only an
approximate location of the desired periodic orbit is required which can be automatically detected in the
control process. The control can be started at any moment by choosing appropriate perturbation restriction
condition. It seems that more flexibility and convenience are the main advantages of this method. The discus-
sions on control of attitude motion of a spacecraft, Rössler system, and two coupled Duffing oscillators are
given as numerical examples.
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I. INTRODUCTION

In recent years, the chaotic control and the chaotic syn-
chronization have been widely studied[1–16]. Controlling
chaos is a very attractive subject initiated by Ott, Grebogi,
and Yorke (OGY) [1]. They proposed an efficient method
(OGY method) of chaos control. This method has the ability
to stabilize a desired orbit chosen from the many unstable
orbits embedded within a chaotic attractor. This aim is
achieved by making a small time-dependent perturbation in
the form of feedback to accessible system parameter. In re-
cent years its usefulness has been shown by application to
many practical systems[4–7]. Some extensions of the OGY
method have been proposed[8,9]. Besides, a number of dif-
ferent methods have been developed and applied using the
related concepts[10–16].

A nonlinear system with chaotic behavior is very sensitive
to initial conditions, particularly in the system with large
Lyapunov exponents[17], that a tiny error may lead to fail-
ure of the control process when its errors are amplified ex-
ponentially with time. Such errors can be introduced by the
linearization of a nonlinear system, the inaccuracy of experi-
mental measurement, and the noisy environment. A number
of presented methods modify control parameters once each
period of Poincaré map[1,8,15,18], and the stabilization can
be realized only for such periodic orbits whose maximal
Lyapunov exponent is smaller than the reciprocal of the time
interval between parameter changes. For the control system
with large Lyapunov exponent or high-order unstable peri-
odic orbits, the tiny errors may “kick” the system state out of
its controllable region. The fluctuation noise leads to occa-
sional bursts of the system into the region far from the de-
sired periodic orbit, and these bursts are more frequent for a
large noise. Therefore the idea of adjusting the system state
more frequently than once each periodT [15,19], and the
idea of a time-continuous control seem attractive in this con-
text [10].

Pyragas have proposed two methods of permanent chaos
control with a small time-continuous perturbation in the form
of linear feedback[10]. The stabilization of unstable periodic
orbits (UPOs) of a chaotic system is achieved either by com-
bined linear feedback with the use of a specially designed
external oscillator or by delayed self-controlling linear feed-
back without any external force. They have calculated the
maximal Lyapunov exponent of the UPOs using the linear-
ization of system to analyze the local stability of the system
and to select suitable experimentally adjustable weight pa-
rameterK. Both methods are based on the construction of a
special form of a time-continuous perturbation, which does
not change the desired UPO, but can stabilize it under certain
conditions.

Ushio proposed a method of chaos control for stabilizing
a periodic orbit embedded in a discrete-time chaotic system
based on contraction mappings in 1995[20]. The validity of
the method is shown using a property of contraction map-
pings.

An open-plus-closed-loop(OPCL) method of controlling
nonlinear dynamic systems was presented by Atlee Jackson
and Grosu in 1995[12]. The input signal of their method is
the sum of Hübler’s open-loop control and a particular form
of a linear closed-loop control, the goal of which can be
selected as one of the UPOs embedded in chaotic attractor, or
another possible smooth functions oft. The asymptotic sta-
bility of the controlled nonlinear system is realized by the
linear approximation around the stabilized orbit. But the cal-
culation of the closed-loop control signal is very difficult in
some cases, especially for complex and high-dimension cha-
otic systems.

In this paper, inspired by the continuous linear feedback
control method[10] and the contraction mapping control
method of discrete system[20], as well as the OPCL method
[12], we propose a method for controlling chaos in the form
of special nonlinear feedback. The validity of this method is
based on the stability criterion of linear system, and it can be
called stability criterion method(SC method). The construc-
tion of a nonlinear form of a time-continuous perturbation
feedback by a suitable separation of the systems in the SC
method does not change the form of the desired UPO. The
close return pair technique[5] is utilized to estimate a de-
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sired periodic orbit chosen from numerous UPOs embedded
within a chaotic attractor.

Using the SC method, the effect of the control can be
guaranteed directly without calculation of the maximal
Lyapunov exponent of the UPOs using the linearization of
system as in Ref.[10]. This method does not require linear-
ization of the system around the stabilized orbit and calcula-
tion of the derivative at UPOs. It seems simpler than the
OPCL method and OGY method in controlling UPOs. As
examples of numerical simulation, the control of the Rössler
system, the control of chaotic attitude motion of a spacecraft,
and the control of two coupled Duffing oscillators are inves-
tigated.

II. THE STABILITY CRITERION METHOD

We consider a time-continuous nonlinear dynamic system
with input perturbation described by

dx

dt
= f„xstd… + ustd, s1d

wherexPRn anduPRn are the state vector and input per-
turbation of the system, respectively. Equation(1) without
input signal su=0d has a chaotic attractorV. A mapping
f :Rn→Rn is defined inn-dimensional space. We suitably
decompose the functionf(xstd) as

f„xstd… = g„xstd… + h„xstd…, s2d

where the functiong(xstd)=Axstd is suitably disposed as a
linear part off(xstd ,t), and it is required thatA is a full rank
constant matrix, all eigenvalues of which have negative real
parts. So the functionh(xstd)= f(xstd)−Ax is a nonlinear part
of f(xstd). Then the system(1) can be rewritten as

dx

dt
= Axstd + h„xstd… + ustd. s3d

Let D(xstd)=−h(xstd), we can see that the functionf +D= f
−h is a linear mapping with respect to the state vectorx,
namely,

sf + Ddsxd = Ax. s4d

Let x*std=x*st+ jTd, j =1,2, . . . , be aperiod-j trajectory em-
bedded withinV. The input signalustd is considered as a
control perturbation signal as follows:

ustd = D„xstd… − D„x*std… s5d

Substituting Eq.(5) into Eq. (3), system(1) and (3) can be
rewritten as

ẋ − ẋ* = sf + Ddsxd − sf + Ddsx*d = Asx − x*d s6d

The difference betweenxstd andx*std is defined as an error
wstd=xstd−xstd* , the evolution of which is determined by
Eq. (6) as

ẇstd = Awstd. s7d

Obviously, the zero point ofwstd is its equilibrium point.
Since all eigenvalues of the matrixA have negative real

parts, according to the stability criterion of linear system, the
zero point of errorwstd is asymptotically stable andwstd
tends to zero whent→`. Then the state vectorxstd tends to
the period-j trajectoryx*std. It implies that the unstable pe-
riodic orbit is stabilized. Note that the input perturbationustd
becomes zero after the state of the controlled system con-
verges to the UPO.

Some very complicated periodically driven dynamic sys-
tems along with the stabilized UPO can have alternative
stable solutions belonging to different basins of initial con-
ditions. Besides, large initial values of the perturbation can
be also undesired for some experiments. Such problems can
be solved by restriction of the perturbation. Therefore the
stabilization is achieved by small input values when Eq.(5)
is modified as follows:

ustd = D„xstd… − D„x*std…
=Asx − x*d + fsx*d − fsxd

if ux − x* u , «,

=0 otherwise s8d

where «s«.0d is a restriction value of error within which
uÞ0. The perturbationustd is treated as a nonlinear feed-
back form. In fact, when the condition(2) is satisfied by a
suitable separation of system(1), UPOs can be stabilized
based on stability criterion of error linear system(7). More-
over, the perturbationustd has a simple form as shown in Eq.
(8). It is not needed to calculate the derivativedf /dx at the
UPO as required in the OPCL control method[12].

In order to obtain the necessary information on an appro-
priate location of a desired periodic solutionx* , the strategy
of the close return pairs described in Refs.[8,15] is utilized.
A time series of the chaotic trajectory generated by the sys-
tem (1) is stroboscopically sampled in every periodT when
u=0. The data sampling can be used to detect the close re-
turn pairs, which consist of two successive points nearing
each other, and indicate the existence of a periodic orbit
nearby. Because of the ergodic character of the orbits on a
strange attractor, we can get many such pairs if the data
string is long enough. Suppose thatxi,1 andxi,2 are used to
denote the first point and its successive point of theith col-
lected return pair,i =1,2, . . . ,M, respectively, whereM is the
maximum number of collected return pairs. When the first
close return pair has been detected(if it is within a predes-
ignated region), taking the first pointx1,1 of this pair as a
reference point, a number of close return pairs nearing the
reference point can be detected,

uxi,1 − x1,1u ø «1, uxi,2 − x1,1u ø «2, i = 1,2, . . . ,M .

We define the mean value as

x* =
1

2M
o
i=1

M

fxi,1 + xi,2g, s9d

where x* is regarded as an approximate fixed point. This
fixed point can be used to define a restriction condition
uxstd−x*stdu,« within which the control input signaluÞ0.

YU, LIU, AND PENG PHYSICAL REVIEW E69, 066203(2004)

066203-2



III. NUMERICAL SIMULATIONS

A. Control of chaotic attitude motion of a spacecraft

In recent years, different approaches of chaos control are
applied in the field of spacecraft techniques[21–24]. In this
paper the SC method is utilized to control the chaotic attitude
motion of a spacecraft, the dynamical equations of which are
described in Ref.[24] as

d2w

dv2 −
2e sin v
1 + cosv

S1 +
dw

dv
D +

K sin 2w

1 + e cosv
+

g

s1 + cosvd2

dw

dv

+ a
cossw + v + vd − 3 cossw − v − vd

1 + e cosv
+ ustd = 0, s10d

where

K =
3sB − Ad

2C
, a =

Imm

2Cm
sin i ,

g =
cpÎp

CÎm
,

and w is the libration angle of the spacecraft in the orbital
plane;v is the true anomaly of the spacecraft measured from
perigee;p, e, i, andv are semiparameter, eccentricity, angle
of inclination, and the argument of perigee of the orbit, re-
spectively;m andmm are the gravitational and magnetic con-
stants of the earth, respectively;A, B, andC are the principal
moments of inertia of the spacecraft; andMc is the control
torque provided by the actuator. Chaotic attitude motion of
the controlled spacecraft can be numerically demonstrated by
integrating Eq.(10), which can be rewritten as

dx1

dv
= x2 + u1 = f1sx1,x2d + u1sx1,x2d,

dx2

dv
=

2e sin v
1 + e cosv

s1 + x2d −
K sin 2x1

1 + e cosv
−

g

s1 + cosvd2x2

− a
cossx1 + v + vd − 3 cossx1 − v − vd

1 + e cosv
+ u2

= f2sx1,x2d + u2sx1,x2d, s11d

wherex1=w, x2=dw /dv, and u=fu1,u2gT. The fourth-order

Runge-Kutta method is used for the numerical integration.
The chaos occurs when the parameters are fixed ate=0.04,
K=1.0, g=0.2, a=0.7, andv=0.1 without input controlsu
=0d. Corresponding chaotic phase trajectory attractor and
Poincaré maps are depicted in Figs. 1(a) and 1(b).

We decompose the functionfsxd into functionsgsxd and
hsxd according to Eq.(2):

gsx1,x2d = AHx1

x2
J = F− 0.5 1

0 − 0.5
GHx1

x2
J

hsx1,x2d = − Dsx2,x1d = H 0.5x1

f2sx1,x2d + 0.5x2
J .

Then

sf + Ddsx1,x2d = AHx1

x2
J = F− 0.5 1

0 − 0.5
GHx1

x2
J ,

wheref +D= f −h is a linear mapping and matrixA has nega-
tive real eigenvaluess−0.5,−0.5d. Obviously, the stability
condition of linear system(7) is satisfied. The following con-
trol input can be used to stabilize certain desired periodic
orbits embedded in the chaotic attractor of Eq.(11),

usx1,x2d = Dsxd − Dsx*d

= H − 0.5x1 + 0.5x1
*

− f2sx1,x2d − 0.5x2 + f2sx1,x2d + 0.5x2
* J

if ux − x* u , «

=0 otherwise. s12d

After obtaining the characteristics of the system(10)
without input signal, the SC method can be applied to control
the chaotic motion of the spacecraft onto the period-1 trajec-
tory. The numerical integration begins from the initial value
sx1,x2dT=s0,0dT. A period-1 orbitx*sTd is approximately es-
timated by Eq.(9) at s5.0237310−1 and 7.4536310−1dT for
M =3 and«1=«2=5%.

Figures 2(a)–2(d) show the results of stabilization of the
unstable period-1 orbit with«=0.06. Figure 2(a) shows the
process of stabilization of period-1 orbit. After a transient
process, the system comes into the periodic regime corre-
sponding to the unstable orbitx* at 31st sampled timev
=31T. Maintaining the control, we find that the errord

FIG. 1. Chaotic phase trajectory attractor and Poincaré maps.(a) Chaotic attractor of phase trajectory and(b) Poincaré maps.
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= uxsiTd−xfsi −1dTgu between the present sampled point and
its previous point rapidly decreases with each stepisi
=1,2, . . . ,v= iTd and eventually achieves less than 10−6. It
means that the period-1 UPO is automatically detected in the
control process with increasing accuracy[see Fig. 2(b)]. Fig-
ure 2(b) indicates the fast convergence property too. We
maintain the control to 80th sampled timev=80T and then
turn it off. The time history of stabilization of the period-1
trajectory is shown in Fig. 2(c). The detected period-1 orbit

is plotted in two-dimesional(2D) sw ,dw /dvd space[see Fig.
2(d)] and the period-1 UPO is embedded within the chaotic
attractor shown in Fig. 1(a). The fixed point corresponding to
the 2D period-1 on the sampled surface is detected at
s5.0227310−1,7.4495310−1dT in the control process.

The time history of the input perturbation signalu2 for
stabilization of period-1 UPO is shown in Figs. 3(a)–3(c)
when«=0.06, 0.3, and 1.5. The signalu2 is taken as zero all
the time before it satisfies the conditionux−x* u,«. The per-

FIG. 2. Results of stabilization of the unstable period-1 orbit with«=0.06.(a) Process of stabilization of period-1 orbit,(b) the plot of
log10d vs i, and(c) time history ofwsnd and (d) phase trajectory of period-1.

FIG. 3. Time histories of the input signalu2snd. (a) «=0.06,(b) «=0.3, and(c) «=1.5.
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turbation signalu2 of the transient process is rather large in
the case of«=1.5. Theu2 is always small including the tran-
sient process; while the wait time for control on average is
now longer in the case of«=0.06, the control system is
switched onsuÞ0donly when the trajectoryxsvd comes near
the period-1 trajectoryx*svd at certain time, namely, when
the condition«,0.06 is satisfied. In Fig. 4 the influence of
restriction range« on the convergence velocity of control
process is illustrated. The shortest control timevmin= iminT is
the shortest time of control process when the errord
= uxsiTd−xfsi −1dTgu achieves 10−6 and imin is the shortest
control steps. It is shown that the convergence of control
process is fastsiminP f7,10gd when the initial conditions are
far from the periodic orbit, namely, when the perturbation
restriction« is taken as«P f0.26,̀ d. The control stepsimin

fluctuate in interval[6,76] when «P f0.04,0.25g. We can
choose an appropriate value of« to suit different requirement
of best control; for example,«=0.3 is corresponding to a fast
convergence process(see Fig. 4 and the signalu of the tran-
sient process is also small[see Fig. 3(b)]. To maintain the
stabilization on the periodic orbit, the feedback of the pertur-
bation is sufficient small.

Note a comparison between the OGY as well as OPCL
method and the above-mentioned SC method. The perturba-
tion in the OGY method(OPCL method) is applied only at
the moment when the state of the system is close to the fixed
point, since they use a linear approximation for the devia-
tions from the fixed point. In the SC method the control can
be started at any moment by choosing appropriate restriction
condition of perturbation«, and the chaotic behavior of the
system can be interchanged easily by the perturbation input

ustd to adapt requirements stabilizing different periodic orbit.
It seems that the SC method has more flexibility and conve-
nience than the OGY method as well as OPCL method. The
results of the flexible control of the chaos to unstable
period-1 or period-2 orbit are shown in Figs. 5(a) and 5(b);
after free running, the control is turned on at the 20th time
stepsv=20Td and the chaotic orbit is stabilized on period-1.
After the maintenance of the control for 50 steps, the orbit
returns to chaotic again when the control is turned off. We
turn on the control again to stabilize the period-2 orbit at the
100th step, then maintain it for 60 steps.

Besides, the results of the stabilization of the period-2
orbit of the spacecraft attractor are shown in Fig. 6(a) and
6(b).

To investigate the influence of noise, we add termssj1
andsj2 to the right-hand sides of Eq.(11), wherej1, andj2
are two independent random functions, having mean value 0
and mean-squared value 1. Figure 7 Shows the results of
stabilization of period-1 orbit for two different levels of
noise withs=0.1 ands=0.01. There are no bursts into the
region far from the UPO even for relatively large noise. The
increase of noise leads to the increase of errord and the
smearing out of the period-1 orbit.

B. Control of chaotic motion of Rössler system

As another example, we consider the Rössler system de-
scribed by

dx1

dt
= − x2 − x3,

dx2

dt
= x1 + 0.2x2,

dx3

dt
= 0.2 +x3sx1 − 5.7d. s13d

We decompose the functionfsxd as follows:

fsxd = 30 − 1 − 1

1 − b 0

0 0 − 5.7
45x1

x
2

x3
6 + 5 0

s0.2 +bdx2

0.2 +x1x3
6 = Ax + hsxd,

whereb is a constant, which can be selected to satisfy the
stability criterion of linear system. Then the eigenvalues of
the matrixA can be written as

FIG. 4. Influence of restriction value« on convergence velocity
of control process,imin vs «.

FIG. 5. The flexible control of the chaotic motion of the spacecraft system.(a) Process of stabilization of period-1 and period-2 orbits and
(b) the plot of log10d vs i.
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l1 = − 5.7, l2,3=
− b ± Îb2 − 4

2
.

Obviously all eigenvalues of matrixA have negative real
parts only whenb.0. Therefore the following control input
ustd can be used for stabilization:

ustd = 5 0

− gsx2 − x2
*d

− x1x3 + x1
*x3

* 6 if ux − x* u , «

=0 otherwise,

whereg=0.2+b, b.0.
The results of the stabilization of the period-3 cycle of the

Rössler system are illustrated in Figs. 8(a)–8(c) at «=2 and
g=1.2 with periodT=17.5. As it is expected, the perturba-
tion becomes very small after a transient process. It is shown
in Figs. 8(a)–8(c) that the control is quite simple and effec-
tive for stabilizing UPOs.

The constantg cannot be taken very large, for example,
when g.11.3, it leads to an unsuccessful control process
due to a large perturbation inputu2std. Such problem can be
solved by restriction of perturbation, namely, letu2=U0
whenu2ùU0 andu2=−U0 whenu2ø−U0, whereU0.0 is a
saturating value of the perturbation. Figs. 9(a) and 9(b) show
the results of stabilization of the period-3 UPO of the Rössler
attractor atg=15, «=2, andU0=0.08.

C. Control of chaotic motion of two coupled
Duffing oscillators

The SC method also can be applied to high-dimensional
chaotic systems. As an example we consider a four-
dimensional nonautonomous system consisting of two
coupled Duffing oscillators[15] described by

j̈ + aj̇ + j3 = h + b cosstd,

ḧ + cḣ + h3 = j. s14d

The first oscillator is driven by an external periodic force,
and two oscillators interact with each other byj and h.
When the parameters are fixed ata=0.2, b=10.0, andc
=0.45, the chaotic behavior of the coupled Duffing oscilla-
tors can be numerically demonstrated by integrating Eq.
(14), which can be rewritten as

ẋ1 = x2,

ẋ2 = − ax2 − x1
3 + x3 + b cos t,

s15d
ẋ3 = x4,

ẋ4 = x1 − cx4 − x3
3,

wherex1=j, x2= j̇, x3=h, andx4=ḣ. According to Eq.(2),
we suitably decompose the functionf(xstd) as

FIG. 6. Results of stabilization of the unstable period-2 orbit with«=0.3. (a) Time history and(b) phase trajectory.

FIG. 7. The effect of noise in stabilizing a chaotic trajectory onto a period-1 orbit.(a) s=0.01 and(b) s=0.1
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f„td = Axstd − D„xstd…

= 3
− 1 1 0 0

0 − a 1 0

0 0 − 1 1

0 0 0 − c
45

x1

x2

x3

x4

6 −5
− x1

x1
3 − b cos t

− x3

− x1 + x3
3
6 .

Then we obtain

sf + Ddsx1,x2,x3,x4d = Ax,

where matrixA has negative real eigenvaluess−1,−a,−1,
−cd. This is the simplest configuration of matrixA whose all
eigenvalues are negative real counts for high-dimensional
systems. Obviously, the stability condition of the error linear
system(7) is satisfied, and the following control input can be
used to stabilize certain desired periodic orbit embedded in
the chaotic attractor of Eq.(15),

ustd = Dsxd − Dsx*d =5
− x1 + x1

*

x1
3 − x1

*3

− x3 + x3
*

− x1 + x3
3 + x1

* − x3
*3
6 if ux − x* u , «

= 0 otherwise.

Figures 10(a)–10(c) shows the chaotic attractor of the
coupled Duffing oscillator in 2D subspacessx1,x2d, sx3,x4d,
andsx1,x3d, respectively. The results of stabilization of the
unstable period-1 orbit are shown in Figs. 10(d)–10(f).

IV. CONCLUSIONS

An important method(SC method) of chaos control based
on the stability criterion of linear system is proposed in this
paper. The construction of a special form of a time-

FIG. 8. Results of stabilization of the period-3 UPO of the Rössler attractor atg=1.2,«=2. (a) History of perturbationu2, (b) history of
the state variablex1, and(c) sx1,x2d phase portrait of the period-3 UPO.

FIG. 9. Results of stabilization of the period-3 UPO of the Rössler attractor atg=15, «=2, andU0=0.08.(a) History of perturbationu2,
(b) process of stabilization of the period-3 UPO with periodT=17.5.
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continuous nonlinear perturbation feedback in the SC
method does not change the form of the desired UPO for
chaos control. The close return pair technique is utilized to
estimate a desired periodic orbit chosen from numerous
UPOs embedded within a chaotic attractor. This method does
not require linearization of the system around the stabilized
orbit and estimation of the derivative at UPOs. The calcula-
tion of the maximal Lyapunov exponent of the UPOs analyz-
ing the local stability of the system and selecting the range of
control parameter is not needed. It is unnecessary to start the
control at the moment when the state of system is close to
the desired periodic orbit. The control can be started at any
moment by choosing appropriate perturbation restriction
condition«, and therefore the chaotic behavior of the system
can be changed to any desired orbit easily by the perturba-
tion input ustd. The validity of stabilization is shown by nu-

merical simulation even for high-dimensional systems. It
seems that more flexibility and convenience are main advan-
tages of this method.

The complexity of the experimental realization of the SC
method is mainly the input of desired UPOs. The method
also relies on explicit knowledge of the system dynamics.
We will solve these problems using delayed feedback input
signal in another paper. Moreover this method can be applied
for some possible goal behavior except UPOs embedded in
chaotic attractor. Detailed discussion can be given also in
another paper.
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FIG. 10. The attractor of the coupled Duffing oscillator in 2D subspacessx1,x2d , sx3,x4d , andsx1,x3d, respectively.(a)–(c) The chaotic
attractor and(d)–(f) results of stabilization of the unstable period-1 orbit.
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